create_training_data.py (1803B)
1 from PIL import Image 2 import cv2 as cv 3 import numpy as np 4 import random as rand 5 import glob 6 7 IMG_SIZE = 8 8 9 training = [] 10 trainingLabels = [] 11 12 13 pics = glob.glob("../train/dog/*.png") 14 for image in pics: 15 img = cv.resize(cv.imread(image, cv.IMREAD_GRAYSCALE), (IMG_SIZE, IMG_SIZE)) 16 # ret, img = cv.threshold(img, 127, 255, 1) 17 labels = [1, 0, 0, 0] 18 training.append([np.array(img)]) 19 trainingLabels.append([np.array(labels)]) 20 21 pics = glob.glob("../train/cat/*.png") 22 for image in pics: 23 img = cv.resize(cv.imread(image, cv.IMREAD_GRAYSCALE), (IMG_SIZE, IMG_SIZE)) 24 # ret, img = cv.threshold(img, 127, 255, 1) 25 labels = [0, 1, 0, 0] 26 training.append([np.array(img)]) 27 trainingLabels.append([np.array(labels)]) 28 29 pics = glob.glob("../train/bird/*.png") 30 for image in pics: 31 img = cv.resize(cv.imread(image, cv.IMREAD_GRAYSCALE), (IMG_SIZE, IMG_SIZE)) 32 # ret, img = cv.threshold(img, 127, 255, 1) 33 labels = [0, 0, 1, 0] 34 training.append([np.array(img)]) 35 trainingLabels.append([np.array(labels)]) 36 37 pics = glob.glob("../train/dolphin/*.png") 38 for image in pics: 39 img = cv.resize(cv.imread(image, cv.IMREAD_GRAYSCALE), (IMG_SIZE, IMG_SIZE)) 40 # ret, img = cv.threshold(img, 127, 255, 1) 41 labels = [0, 0, 0, 1] 42 training.append([np.array(img)]) 43 trainingLabels.append([np.array(labels)]) 44 45 training = np.array(training) #as mnist 46 trainingLabels = np.array(trainingLabels) #as mnist 47 48 training = np.reshape(training, [training.shape[0], training.shape[1] * training.shape[2] * training.shape[3]]) 49 trainingLabels = np.reshape(trainingLabels, [trainingLabels.shape[0], trainingLabels.shape[1] * trainingLabels.shape[2]]) 50 np.save('../train/training', training) 51 np.save('../train/trainingLabels', trainingLabels) 52 print(training.shape) 53 print(trainingLabels.shape)