test_neural_net.py (1254B)
1 import numpy as np 2 import operator as op 3 4 def sigmoid(x, deriv = False): 5 if (deriv == False): 6 x = np.clip(x, -500, 500) 7 result = 1/(1+np.exp(-x)) 8 else: 9 result = x*(1-x) 10 return result 11 12 testDog = np.load('../test/testingDog.npy') 13 testCat = np.load('../test/testingCat.npy') 14 testBird = np.load('../test/testingBird.npy') 15 testDolphin = np.load('../test/testingDolphin.npy') 16 17 syn0 = np.loadtxt('../neuralnet/syn0') 18 syn1 = np.loadtxt('../neuralnet/syn1') 19 syn2 = np.loadtxt('../neuralnet/syn2') 20 21 inputLayer = testDog 22 layer1 = sigmoid(np.dot(inputLayer, syn0)) 23 layer2 = sigmoid(np.dot(layer1, syn1)) 24 layer3 = sigmoid(np.dot(layer2, syn2)) 25 print ("Dog Output:") 26 print (layer3) 27 28 inputLayer = testCat 29 layer1 = sigmoid(np.dot(inputLayer, syn0)) 30 layer2 = sigmoid(np.dot(layer1, syn1)) 31 layer3 = sigmoid(np.dot(layer2, syn2)) 32 print ("Cat Output:") 33 print (layer3) 34 35 inputLayer = testBird 36 layer1 = sigmoid(np.dot(inputLayer, syn0)) 37 layer2 = sigmoid(np.dot(layer1, syn1)) 38 layer3 = sigmoid(np.dot(layer2, syn2)) 39 print ("Bird Output:") 40 print (layer3) 41 42 inputLayer = testDolphin 43 layer1 = sigmoid(np.dot(inputLayer, syn0)) 44 layer2 = sigmoid(np.dot(layer1, syn1)) 45 layer3 = sigmoid(np.dot(layer2, syn2)) 46 print ("Dolphin Output:") 47 print (layer3)